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Abstract: 

A rotating ensemble of bodies  of arbitrary  shape with angular 
periodicity  scatters  an  electromagnetic  wave  to  produce  a  spectrum 
of frequency  components  characteristic  of the  structure and its  rate 
of rotation.    The spectrum and its  properties are predicted through 
electromagnetic   field   theory. 

The theory has been developed such as to exploit the angular 
periodicity  and thereby reduce the computational load by  a large 
factor.    A consequence of the approach is that the spectrum is found 
directly. 

Many of the predictions have been confirmed by direct computation 
of the scattered field for a series of rotational positions to simulate 
a time series, followed by discrete Fourier transforming to produce 
the   spectrum. 



1.       Introduction 

The intake of the jet engines of an aircraft makes a major 
contribution to its radar cross-section.    The rotation of the engine 
compressor,  each stage of which exhibits angular periodicity,  gives 
this contribution a distinctive spectrum by means of which one 
might hope to identify the target [2,3,4].    In a previous study [5] 
the compressor stage was crudely modelled as  a coplanar 
ensemble of wires radiating from an axis.    In the present study 
this is generalised by replacing each wire by a conducting body of 
arbitrary shape.      The ensemble of bodies exhibits the same 
angular perodicity as did the wires.      If each body is given the 
shape of a compressor blade a stage of the compressor may be 
simulated.    The central hub or axle from which the blades radiate 
may be included without difficulty. 

In the previous  study a number of conclusions were drawn about 
the characteristics of the spectrum.    These were based on the wire 
model, although in most cases it was intuitively clear that they 
would be valid for the more general case.    In the present study 
these  intuitions   are  established  rigorously. 

This study, like the previous, had two principal goals.    The first 
was to find a means to calculate the field which exploited the 
periodicity  of the ensemble and thereby to reduce the 
computation load.    The second was to express the result as a 
frequency spectrum.    In the event, the means by which the first 
goal was met automatically met the second. 

The incident electric field is expressed as a summation of 
harmonics  of the azimuthal angle  (measured around the axis). 
This approach exploits the angular periodicity of the ensemble of 
bodies.    Each harmonic of the field excites a harmonic component 
of the current.    For each harmonic it is found necessary to 
calculate the current on only one body, for only one azimuthal 
angle of incidence;    the currents on the other bodies, for other 
directions of incidence, are found simply from the first.    In 
consequence,  the computation needed to  solve  for the  scattered 
field is reduced (compared to a direct calculation which does not 
exploit the  angular periodicity)  approximately  in  proportion  to  the 
number of bodies. 

A  further beneficial  consequence of the  harmonic  decomposition 
of the incident field is that the scattered field is found directly as 
a frequency spectrum.    The components are lines  at intervals of 
the rotation rate multiplied by the number of bodies.    This is 



consistent  with  the  fact  that  the  ensemble  re-presents  the  same 
aspect to the radar at this rate.    The spectrum extends with 
significant  strength  above  and  below  the  illumination   frequency 
by an amount equal to the Doppler shift associated with the 
maximum linear velocity of the bodies.    Beyond these limits the 
spectral   lines  continue,   becoming   weaker  approximately 
exponentially. 

Many features of the  spectrum of the scattered field, including 
those mentioned in  the  foregoing paragraph,  may  be deduced 
from the form of the equations without proceeding to their 
solution.    At this point in the study, exact solutions have not been 
calculated.    It is to be expected that further features useful for 
target identification may be exposed by the exact numerical 
solutions.    To this end an approach to numerical solution has been 
examined  and described  in detail. 

It is possible to make predictions concerning the effects of 
conditions outside the present simulation,  such as  the presence of 
the engine cowling, the presence of multiple stages and the 
presence of stator blades in the engine.    The fact that the 
compressor stage is surrounded by a cowling and not in free space 
implies that the incident field is not a plane wave:    however the 
true field may be decomposed into a spectrum of plane waves, 
each of which interacts  with the scatterer in the manner described 
by the present theory.    The presence of multiple stages has the 
result that the scattered field has a spectrum which has some of 
the character of a superposition of the spectra of the separate 
stages, with weaker components at intervals of the shaft rate.    The 
presence of stator blades does not alter the frequencies of the 
spectrum,  but,  by  introducing  new  mechanisms  of electromagnetic 
interaction  between  moving  and  stationary  bodies,  causes  the 
spectrum to have  significant  strength  at frequencies  beyond the 
Doppler limits  mentioned  above. 

Many of the predictions  and expectations  arising from the theory 
have been confirmed through  numerical  simulation.     Calculations 
for simple shapes have been made using the NEC program [6] for a 
series of angular positions and the results submitted to a fast 
Fourier transform.     Confirmation has also been obtained through 
measurement  of some  wire   structures. 



2.      The   ensemble   of   bodies 

In this section is described the geometry of the ensemble of 
bodies,  together with  the coordinate systems  and  some  special 
parameters  to  be  used below. 

I conducting bodies, with surfaces Si, i=0,l,...,I-l,  are arranged 
about an axis (in the coordinate system to be used, the z axis) at 

2K angular spacings of —, see figure 2.1.    Their shapes are the same 

and oriented such that Si is generated by rotating So about the z 
axis  throught the  azimutal  angle 

<D.=i—. (2.1) 

The objects may be detached, as shown, or attached to one 
another.    In the latter case the individual bodies must be defined 
by an arbitrary cut through the common region. 

Rectangular, cylindrical and spherical coordinates will be used as 
convenient; the system in use will usually be apparent from the 
conventional symbols:    (x,y,z), (p,(f>,z), (r,9,0). 

If a point on surface S0 has position vector and coordinates 

f0 - (x0,y0,z0) ^ (Po,0o,zo) = (r0.e0,4>0), 

with  the  conventional  relations 

9      ? o —i xn —1 ^o 
Pn=(Xn+yn)  > <t>n = cos    — = sm i-u-, p0 p0 u u (2.2) 

I 
r   = (x2+v2+z2}2   0   = cos-*-Q- = sin-1 -Q- r0    l 0    y0     0;   '   0 r r r0 ro 

then a point of position vector 

r. =(p.,(b.,z.) 

with 
pi = p0* *i = *0 "*"°i* zi = z0 (2'3) 

lies on Sj. 



Points related like   r„ and r.  will be called "corresponding points". 

Such points are illustrated in figure 2.2.    Wherever ?0 and r. or 

their similarly  subscripted  coordinates  appear in   the  same 
equation, they  are to be understood as corresponding in this  sense. 



Figure 2.1:    The ensemble of bodies with surfaces S0, S^.-.SJ.J, 

disposed with angular periodicity about the z axis.    A plane wave 
is incident from the direction of spherical coordinates Q1,^1.   The 
scattered field is observed from the direction 0S,<)>S. 



Figure 2.2:    "Corresponding" points ?0 and r. on bodies S0 and Sv 

The vectors  c1 (f0) and c1 (f.)  are  rotated relatively  to  one another 

about the z axis in the same way as r0 and r.. 



3.     The   incident   field   and   its   harmonics 

In this section the incident electromagnetic field is defined.    The 
manner of its decomposition into a Fourier series is described and 
the rotation  dyadic  is  introduced. 

A plane wave is incident on the ensemble of scatterers from the 

direction Q1,^1, see figure 2.1. The electric field vector at a point 

(x,y,z) or (p,<|>,z) is 

•      •      jk^xsin^cos^+ysinG'sin^ + zcosG1) 
E = e E e   u 

:      jk^Cpsin^cosC^-^ + zcosG1) 
= e^e   u 

(3.1) 
jcont 

where  kQ is the wave number for e    u    time dependence,  the 

factor e ° is suppressed, and e1 is a unit vector specifying the 

polarisation. In this work we consider the two cases e1 = 01 and 

e1^1. Any other e1 may be resolved into components in these 
directions.    We note 

and 

G1 =xcos91cos(|)1 +ycos91sin<|>1 -zsinG1 

= p cos G1 cos((J) - (j)1) - <j) cos G1 sin(<|) - (j)1) - z sin G1 

01 = -x sin (j)1 + y cos (J)1 

= p sin((() - (J)1) + <}> cos((j) - (f)1) 

(3.2) 

(3.3) 

in which the unit vectors  p and <j>  are evaluated at the observation 
point (p,c|>,z).    Here and subsequently the superscript i specifies the 
incident field while the subscript i is an index specifying the body 

Si- 

(1), (2) and (3) give, for e^Q1 



• ; ;   jk^psinB^osCd)-*1) 
E^pcosQ'cos^-^V ° 

; ;    jk^psinQ^os^-d/) 
-((JcosG'sin^-d^e   ü 

~ •  ^    J^psinG^osCf))-«))1)        jk^cosG1 

-zsinG^e   u )EQe   u 

(3.4) 

si _H and for e = d> 

m    ,~ ■ ,.    A, J^psine^os^-fl)1) 
E^Cpsm^-^^e   u 

j   jk^psinG1 cos(<{) — (j)1)      jk-.zcosG1 

+ <t>cos(<t>-<(>1)e   u EQe   u 

(3.5) 

The products  of trigonometric  and complex exponential  functions 
in (3.4) and (3.5) are expanded, using the formulas in Appendix A, 

as Fourier series in (j)-«])1.   Thus 

Ei(r)=     S    E^r) (3.6) 
n = —oo 

where 

E1
n(r) = E0cji(r)eJn((t,-<')1> (3.7) 

will be referred to as the "n th harmonic" of E1, and 

for e^G1, 

c^D^cjfcr) 

n    -        i i     -        ; n i ; jk^.zcosG1 

= jn(-pcosG1jJti(P1)-(|)cosG1-^J (P^-zsinQ1; (P1)^   ° n pi   n n 

(3.8) 
while for e1 = §l, 

i id> n -s n ; ;     jknzcosQ1 

c^(r) = cJi
(p(r) = -jn(p^-Jn(P1) + (),jJn(P1))eJ ° (3.9) 

in  which 



P1 =knpsin91, (3.10) 

and the non-constant  unit vectors   p and <j> are evaluated at r. 

Consider corresponding  points   rQ and f. and the vectors  c1 (rn) and 
-i c (fp, see figure 2.2.    The position vectors are related through 

fi=VRi (3.11) 

where   R[ is a dyadic which rotates a vector about the z axis 
through angle   ®j.     In rectangular coordinates (3.11)  corresponds 
to  the matrix  equation 

r. 
IX 

r. 
r. 

L iz. 

cos®,    -sin®.    0 
l l 

sin®,     cos®.     0 
l l 

0 0 1 

l0x 
r0y 
r0z. 

(3.12) 

where rjx etc are the rectangular components of r..   From their 

definitions in (3.8) and (3.19) it is clear that the c1   are related n 
similarly: 

ü^i> = ün<V-Ri (3.13) 

and with (3.7) that the harmonic fields are related by 

nl En<'i> = En<V-R*      ' (3.14) 



I 0 

4.      Induced   surface   currents 

In this  section  the  harmonic  surface current densities  are defined 
and the relations  between  the  currents  on the different bodies  are 
deduced. 

The nth harmonic of the incident field excites a current at r^ on Sj 

of vector surface current density   J? (fj);    call this the nth harmonic 

current.    The total current is the sum of the harmonics. 

S j is rotated relative to S Q through the same angle  Oj as the field 

E^r.) is rotated relative to E1 (fQ), see (3.14).   Thus, relative to its 

own orientation,  Sj experiences  the  same incident field harmonic 
jnO. 

as does S0, except for the phase factor e     l.    Therefore the vector 
currents exhibit the same relations as the fields: 

Is (r.) = Jn (rn)-RieJn0i- (4A) 
lir l       0nv 0 

(4.1) reveals a major benefit of expressing the field as a sum of 
harmonics.    As the currents on the surfaces are simply related it is 
necessary to determine the current on only one of them.    If the 
current is found by the moment method to be discussed below, 
and it is expressed as a set of N unknowns per surface, a direct 
approach would require the solution of NI equations in NI 
unknowns,  the  solution  time  being  asymptotically  proportional  to 
(NI)3.    With the present approach the solution time is proportional 
to N3 per harmonic.    We shall presently see that the number of - 
significant  harmonics   approximates   2n times the ensemble 
diameter   measured   in   wavelengths. 
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5.      The   electric   field   integral   equation 

In this section we derive the electric field integral equation, the 
solution of which is the surface current density distributions on 
the bodies.    It is found necessary to calculate the current on only 
one body, for only one direction of incidence, and that the currents 
on the other bodies, for other directions of incidence, may be 
derived  from  the  first. 

The currents  induced on  the surfaces radiate the scattered field. 
The total field,  incident plus  scattered, satisfies  the boundary 
condition  that  everywhere  on  the  surfaces  its  tangential 
component is zero.    This is expressed in an integral equation 
whose  solution is  the  surface  current density distribution. 

The field Es (r) at a point of position vector r radiated by the nth 

harmonic currents on all the bodies is the sum' 

1-1        _ = 
E*(f) =   I        JJJ^Crp.Goarpds' , (5.1) 

i = 0r.'onS. 
l       l 

where   GT(r,F) is the dyadic Green's function relating the field at f 

to a point source at ?. 

With (3.11) and (4.1) this is rewritten in the form 

_„ 1-1   jnO. _0 ===== = 
E*(r) =   I   e      »      //(^(rQ'XRp.GoafQ.Rpds* (5.2) 

i = 0 r0'onSQ 

The boundary  condition is 

[E^f.HE^r.)] =0, allr.onS.,'j = 0,l,...,I-l (5.3) L  nv y      nv j Jt J        J 

where the notation [.]t specifies  the  vector component tangential  to 

With (3.7) and (5.2), (5.3) becomes 



I 2 

1-1 jnO. _. =    _ 
[ I e      !       \\      (jJn(r0

,).Ri).Go(r.,r0'.Ri)ds,]t 

i = 0 f 'onSn 0       0 (5.4) 

jn(<j> -(j)1) 
^-E^G^e      J ]t,   allr. onSj.allj 

(5.4) must be satisfied for all j.   Explicitly for j = 0, 

1-1 jnO. =   = 
[ X e      l       JJ(J^n(r0').Ri).Go(r0,f0'.Ri)ds']t 

1 = 0 f0'onS0 (5.5) 

jn(())n-(f)1) 
= [~E0Ün(f0)e V   ?0OnS0 

«i /= 

With (3.11) and (3.13), this may be written, after some 
rearrangement 

1-1 jnO.    . _ =      =-i = = 
[le      1 + J       J/     J^n(f0').Ri + j.Rj   .G0(r0,ri').Rjds']t 

i = 0 r0'onSQ 

_    • jn^:-^) 
= [-Er.c1(f.)e       J ].,   f-onS. L     0nvj; Jt'     j        j 

(5.6) 

where   Rj    is the dyadic which rotates a vector through the angle 

-$; and in which it has been noted that <I>. +0.=0.    . and 

Using 

Rj^GoCtQ.fpRj =00^,?^/) (5.7) 

(see Appendix B), and replacing the summation index i by i+j, we 
obtain 

tie      1       \\      J^n(r0').Ri.G0(fi,ri')ds']t 

i = 0 f n
,onSn 

0       0 (5.8) 

-    ; JnOta-^1) 
= [-Enc1(r.)e       ° I,   r.onS. 
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(5.8) is the boundary condition on Sj, Cf. (5.4), and has been 
derived from (5.5), the boundary condition on the body SQ.   Thus 
satisfying the condition on SQ satisfies it on all. 

In (5.5), multiply both sides by  e-3^   and change the order of 
summation  and  integration  to  get 

[   JJ^V^Vo'^t 
r0 onS0 (5.9) 

= [-E0c^(f0)e     0]t,   fo0nso 

where 

= 1-1 inO.^ = = „,m 
Gz(r0,r0')=   IeJ     1Ri.G0(f(),r0'.Ri) (5.10) 

i = 0 

and 

W^d^ (5-U) 

The azimuthal direction of incidence (J)1 does not appear in (5.9) 

and hence the new unknown  J^(?0') is independent of (f)1.   This is a 
further benefit of the present approach:    if we are interested, as 
we shall be, in directions of incidence over a range of azimuthal 
angles <}>*, all with the same polar angle 9*, it is unnecessary to 
solve more than one integral equation, (5.9).    The currents on all 
bodies, for all azimuthal incidence directions are then, from (4.1) 
and  (5.11), 

-o -c        =  jn(0.-(I)1) 
Jin(V = Jn(VRie       X • (5-12) 
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Surface-fixed    coordinates 

Several of the vector quantities of concern to us, such as the  Js (r~) 

and both sides of the integral equation to be solved, (5.9), are 
tangential to the body surfaces.    At a point on the surface the 
vector may be specified by its components in only two orthogonal 
directions.    In this section these properties are used to reduce the 
apparently   three-dimensional   problem   to   a   two-dimensional   one. 

For a given problem we define a pair of curvilinear orthogonal 
coordinates   oc,ß over the surface SQ.   This serves to define, at 

every point  f0 on SQ a pair of orthogonal unit vectors  a(r0),ß(r0) 

tangential to the surface.    They are related to the cylindrical unit 
vectors   p,<j>,z  through the direction cosines 

VV = «(V-P(V' a<t> = &'* - «z =a-z, ßp =ß.ß, ß^ = ß.<j>, ßz = ß.z 
(6.1) 

Note that all the quantities in (6.1), excepting  z, are functions of 
position, as shown explicitly in the first relation. 

Each side of (5.9) is decomposed into its components in the a and 

ß  directions: 

a(r0).      JJJsn(f0').Gz(r0,f0'Xy=-E0e     0^) 
fo'onSo 

Jn*oX ß(r0).      JJJsn(r0').Gz(f0,f0')ds'=-E0eJ   '^(fQ) 
r0'onS0 

(6.2) 

where 

C^ = C^.T1 = nr(     n    ' 

(6.3) 

' iC     iC     K c ^    c\    c ^ np     n(j)     nz 

IT 

^P      \      \ T| = a,ß;£ = 8,<|>, 

c1^ , c=., c1^   are the cylindrical coordinate components of c1 % 

C, = Q,§, i.e., the respective coefficients of p, (j>, z in (3.8) or (3.9), Tip 

(r] = a,ß) etc are given by (6.1) and superscript T denotes matrix 
transposition. 
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The  surface  current density   Js(r0') is also expressed in a and ß 

components   Js    and JS
R  respectively  : 

Js
n(r0) = d(r0)Js

na(r0) + ß(r0)JS
nß(r0). (6.4) 

The a and ß  components are  related to the cylindrical  components 
thus: 

np 

Js. no 

nz <V) 

p   Kp 
ttA      ß,K 

a     ß 

na 

nß 
(6.5) 

(f0') 

The subscript on the matrices,  here and elsewhere,  specifies the 
arguments of the functions which are its elements. 

The integrand in (6.2) may now be written in component form as 
follows: 

TS W-^Vo') 
Gpp Gp<|> Gpz 

G(pp G<\>$ G(()z 

Gzp    Gz(j)    Gzz 
<jS„a<V> 

J(-r0,?0') 

a 

a; 

a 

+ jSnß(r0') 

(r0') (V) 
(6.6) 

The elements of the G matrix, Gpp etc, are derived in Appendix C. 

With (6.1) and (6.3) to (6.6), the vector equations (6.2) may now 
be written in terms of the oc,ß   components: 

f0'onS0 

Gacc   Gaß 

Gßa   Gßß (f0,r0-) 

na 

nß 
ds' 

%') 

= -E0e 
jn<t>r 'na 

'nß J(r0) 

(6.7) 
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where 

Gcccc   Gaß" 

L°ßa    Gßßj 
^r0'r0 ] 

ap   %   az 

ßp h K (r0) 

G G   . G 
PP P<f> pz 
P<|) (()<)) ())Z 

G „ G  . G zp z<p zz (f0,r0')L 

a ß„ P      P 
aA ß^ 
a ß z Kz. (r0') 

(6.8) 

and as before, t, = Q,§. 
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7.      The   moment   method   of   solution 

The current density distribution  is  found from the solution of the 
integral equation (6.7).    In this section we describe a method by 
which this equation may be solved. 

Two sets of basis functions,  f^On) and f^(rQ), are defined over SQ 

and  the current density distributions  are expanded in  terms  of 
them: 

'naCo'^JyJV- Vo,)=^1
,<£5(,o,)      (71) 

For an exact representation of the currents  the  summations  must 
in general be infinite.    Truncation to the finite lengths La, Lß thus 

implies   approximation. 

L 
K^h-r w_p Jn*0„iC 

(6.7) and (7.1) give 

L 
^^^(V^jV^V = -E0e-  '-c-a(r0), 

V a eKr )+  Y  b eßß0f ) —E e^0^ (r ) (7 2) 

C = 9or<t) 

where 

g?%(y=      JJfJ(fo,)GTix(?0'fO,)(tf      ri = a,ß;% = cc,ß       (7.3) 

and the alternatives for £  correspond to  the  alternative 
polarisations of the incident field. 

The integrand of (7.3) is composed of known functions and hence 
the integral may be performed, at least numerically.    With all the 

gT^(?0) known, (7.2) is now a pair of simultaneous linear 

equations in the La + L« unknowns  a»,b,.   The number of 

equations can be made equal to the number of unknowns by 
enforcing (7.2) in (La + LR)/2 independent ways.    The simplest 
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way to do this is to enforce (7.2) at (La + Ln)/2 different values of 
T„, a technique known as  "point matching".    A more general 

technique is to multiply both sides of (7.2) by (La + L«)/2 

independent  functions  of  ?n  successively, in each case integrating 

the results over SQ.    The use of these weighted integrals gives the 
technique the name "method of moments".    Point matching is an 
application of the moment method in which the weighting 
functions   are   impulses. 

A possible choice of basis functions is the set of rooftop functions 
illustrated in figure 7.1.    The surface is divided by the a,ß grid into 
approximately   rectangular  patches,   numbered   ^ = 1,2,...,L.   (We are 
taking La = LR = L.) The ^th  function for the current component 

in the a direction, f?(?0), varies with position ?0 in the patch as a 

triangle with unit height in the direction of flow a, and as a 
constant in the transverse (ß) direction.    The function is zero 

outside its patch.    The function for the ß  component,   fu?0), is 

similar but varying as a triangle in the ß  direction.    The patches 
overlap such that the edge of each is the centreline of a neighbour 
except at an edge of a surface. 

The  overlaps  together with  the  triangularity  ensure that  the 
current density is continuous in its flow direction.    Also, for a 
surface of zero thickness terminating in an edge, the normal 
component of the current density at the edge is zero.    In the case 
where the bodies are in contact and must be separated by a cut, a 
special basis function must be used at the cut to ensure current 
continuity   there. 

If point matching is used, a convenient set of points for its 
application is the set of points  rQ,; k = l,2,...,L, located at the 

centres of the L patches.    Enforcing (7.2) at these points yields the 
2L   simultaneous  linear  algebraic  equations 

V a e
aa + y b e«P --E Jn^X (-r   x 

£***** \Zxikl ° Cna(r0kX 

a       ßa _,_    ß       ßß       _   Jn<t>0 i£ „ 

l = \ l ^    i=l 
£ = 9or<j) 

£.aÄ+AbÄ=-EOe     ^V'ok'- (7-4) 
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where 

£}=      JJfJ(r0")G     (fok.r0')drf 'ki 
Tl = a,ß;x = a,ß (7.5) 

r0'onS0 

Patch I 

Figure 7.1.    Rooftop functions for representation of the a and ß 
components of the vector current density on patch 1. 
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8.      If  the   bodies   are   in   contact 

In this case there is only one body, with a shape exhibiting 
angular periodicity. In this section is described the special 
treatment  required  for  this  case. 

The original single body is sectored into I separate bodies by cuts 
exhibiting the same angular periodicity as the original,  see figure 
8.1    The currents flow on the surface of the original body;    there 
are no currents on the surfaces exposed by the cutting. 

Across the lines of the cuts on the original surface the normal 
component of the current density is continuous.    Provided the cut 
is not along a discontinuity of the surface geometry such as a 
ridge, the parallel component will be continuous also.    Thus in 
general we take the total vector current density  to be continuous 
across the cuts. 

Consider the cut separating bodies 0 and  1  and the current 
densities at points close to the edges formed by it;    let fn       be a 

u'e2 
point    on body 0 near its edge 2 and L       be on body 1, near its i,e1 

edge 1, see figure 8.2.    The two edges are formed by the cut.    In 
the limit as the points approach the cut and one another, the 
continuity  remarked  in  the  previous  paragraph  is   expressed  by 

Now let rn    be the point on body 0 corresponding to f,      on 1. u,e.| i,e* 

From (4.1), (5.11) and (8.1) we find 

3n<fO,e2> = Jn<V1>-IIeJ,1<I>1 <8'2> 

- in words: the vector current densities on the two cut edges of 
body 0 differ in direction by angle Oj and in phase by n$i[, but 
are  otherwise  equal. 

This property of the currents may be built into the basis functions 
so that the solutions exhibit it automatically.    For example, a set of 
rooftop basis functions running from edge  1  to edge 2, see figure 
8.3, may include a special function consisting of a half-triangle of 
strength unity  at edge   1,  and a second half-triangle of strength 
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jnO. 
e      [ at edge 2.    The current described by an expansion in these 
functions will have the required  scalar behaviour.    The required 
vector rotation will be present if the surface directions   d(r0),ß(rQ) 

rotate from edge to edge through the angle <t> j separating   the 
edges  in azimuth. 

Thus an  appropriate choice of basis  functions  ensures current 
continuity  across  the  cuts. 

It is remarked that the progressive phase shifts of the currents in 
the separate bodies, see (5.11),  ensures that if the ensemble 
includes the z axis, the currents flowing towards the axis sum to 
zero at the axis, as required by Kirchhoffs current law. 
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cut surfaces 
(no currents) 

currents 

(a) (b) 

Figure 8.1. (a) "Ensemble" of contacting bodies separated by cuts, 
(b) One of the separated bodies; no currents flow on the surfaces 
exposed by the cuts. 

body 1 

bodyO 
edge 2 
body 0, 
edge 1 
body 1 

edge 1 
body 0 

(r«.J 

Figure 8.2.    Showing current densities adjacent to cuts and their 
continuity  across  cuts. 
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Figure 8.3.    Rooftop basis functions to enforce continuity across 
cuts. 
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9.      The   scattered   field 

In this section an expression is found for the field scattered from 
the stationary ensemble of bodies  for given directions  of incidence 
and   scatter. 

The scattered field at a distant point  rs =(r,es,<))s) is the sum of the 
fields radiated by all the current harmonics on all the bodies;    thus 
from  standard radiation theory  [e.g. 7], 

°°     I -1 ik  rs r ' 

(9.1) 

Es(rs) = K0    Z      2       JJ    J^fp-CW+^e   °   ' * ds' 
n = -ooi = 0r.'onS. 

l        l 

where 

jk0r 
K0=jk0Z0^T (9-2) 

and ZQ is the intrinsic impedance of free space. 

With (3.11) and (5.12), (9.1) may be written in the form 

_o   5 °°    I —1 jn(<E>. — 61) „„ „„   jkAA 
EV) = K0    I      ZeJl> jj    (Ane9s

+A    (»V 0   Hs' 
n = -ooi = 0 f.'onS. 

l        l 

(9.3) 

where 

Ar=rs.(r0'.r), An0=es.(Js
n(ro').R:), A^« ^(J^RT) 

(9.4) 

By use of (3.12) and the relations among vector components in 
rectangular,   cylindrical  and  spherical  coordinate  systems,   see 
Appendix D, the terms in (9.4) may be manipulated to yield 

S
Jk0Ar=Js An9e r =J„(ro')-(Po'cosescos\j/-|o'cos0ssin\|/-z'sines) 

jk0p0'sin9scos\j/ jknZ ' cos 9s 
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(9.5) 
and 

VJ ° r =Js
n(V

)-(po'sin^+Vcosvt/) (9 6 

jk0p0'sin9scos\jf jk0z0'cos9s 

where 

¥ = «|)0
t+Oi-(t)s) (9.7) 

and p0',<j)0',z0' are unit vectors at r ' in the p,<J>,z directions 

respectively. (z0' is of course z, which does not vary with 

position.) 

(9.5) and (9.6) contain products of trigonometric and exponential 
functions which may be recognised as closely similar to those in 
(3.4) and (3.5).    Their right sides are similarly expanded as Fourier 
series to give 

ik~A       „ °°      cr jmfA-.'+O. -<bs) 

m = -°° 

(9.8) 

where   cs , c^  are respectively similar to the  c   , c1^  defined in mm v J mm 

(3.8) to (3.9) with Ql,$l replaced by Qs,tys and r replaced by fQ'; 

thus 

jk0z0'cos9s 

(9.9) 



26 

cfov): Hm(Po'-rJ  (Ps) + ^JJ'm(Pö))e 
jk0z0'cos9s 

m (9.10) 

where 

Ps=k^pn'sin9s 
c0Po (9.11) 

It will be convenient below to express the vectors   c   .c^  in terms n    n 
of their a,ß components.    These are (Cf. (6.3)) 

X' 
"na 

"Aß. 

c ^ 
a     a,    a np 

P     <t>     z fi 

ßp   h   h\ n(|) 

c ^ nz 

C = e,<j) (9.12) 

where   ci=, cs^,, ci=   are the cylindrical coordinate components of 

_s£ c % i.e., the respective coefficients of p, <|), z in (9.9) for C, = 0, or 

(9.10) for C, = <{>, and the cxp etc are defined in (6.1). 

(9.3) with (9.8) to (9.12) becomes  after some rearrangement 

?S/-S 
oo oo 

Eb(rs) = Kn    X I    e -jOV + nKt)8)1-;1 Kn + m)^ 

n = -oom = —oo 
I e 

i = 0 

JJ     I-^n'^CFn^+^Ofo'^^o'itf 
(9.13) 

ro'onSo 
nvl0 y>v mVi0 

Finally we note from the definition of $., see (2.1), that the 

summation on i is zero unless n + m is an integer multiple of I, in 
which case it equals I.   Therefore, set m = kl - n and sum over 
integer values of k to get 



27 

RS C?S \ — 
oo oo 

Es(r>) = KnI    I        I    e jnC^-t))1) 

k = —°on = —oo 

7S 
If   Ii„(fo'»ES-„(V)e^^-„(ro')*s)=J(kl"n,*°- ds' 

r0'onS0 

.-jW 

(9.14) 
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10.      The   spectrum   of  the   scatter   from   a   rotating 
ensemble 

In  this  section the hitherto  stationary  ensemble  is  considered  to 
rotate about its axis.    The scattered field is modulated as the 
scatterer moves.    A formula is found for the spectrum of the 
modulated   field. 

Rotation of the ensemble of bodies about the z axis with angular 

velocity Q in the <|> direction may be simulated by setting §l and <j)s 

in (9.14) to rotate with velocity -Q   about a stationary  ensemble 

while holding their difference constant.    Thus with §s = -Qt, (9.14) 
becomes 

Es(rs)=     I    E^(rs)ejkIDt (10.1) 
k = -oo 

where 

s 
kl,0 E? 

Es 

kl,((> 

= K0I    I    J°** 
'?S (ra) 

n = —oo 

rQ'onS0 

(10.2) 
and 

A<|> = (<|>s-<)>*) (10.3) 

is  constant. 

(10.1) represents a spectrum with lines disposed on each side of 
zero at intervals of IQ.    This is the radian frequency with which 
the bodies pass a fixed point;    given the focus of this study on the 
modulation of radar scatter by the blades of a jet engine 
compressor,   IQ will be referred to as the "blade rate".    Q will be 
called the "shaft rate". 

IQ  is also the frequency with which the ensemble re-presents the 
same aspect to the radar.    It is thus the fundamental  frequency of 
the modulation of the scattered field.    It is therefore in accord 
with  expectations  that the   spectral   components   are  separated  by 
IQ. 
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(10.1)  represents a spectrum centred on  zero.     If the suppressed 
jcont . 

factor e   u    is reintroduced, the spectrum is centred on the carrier 
frequency   COQ.    An alternative interpretation of (10.1) is that it is 
the spectrum  of the received signal  homodyned to base band. 
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11.      The   spectrum   calculated   from   the   current   expansions 

For an exact calculation of the spectrum the currents must be 
known.    If they have been found by the methods described in 
section 6 and 7 and are available in the form of (7.1), then (10.2), 
with (9.12),  may be written as 

'kl,9 

'kl,<|> 
= K0I    I   e jnA<|> 

(rS) 
n = —oo 

a 
(la,     \\     f«(T0') 

* = 1    f0'onS0 

,s9 
'kl-n,a 

LwkI-".«J(f0') 

j(kl-n)<t>' 
» "  Ho ds' 

+ Ib,     \\     fj(r ') 
^l\oaS0 

,s9 
'kl-n,ß 
^S(j) 

'kl-n,ß 

j(kl-n)(|> ' 
J °ds') 

(r0>) 

(11.1) 

All the functions and constants in (11.1) are calculable using the 
methods described in previous  sections.     This equation is  therefore 
a formal solution for the spectrum of the electomagnetic  scatter. 
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12.      Properties   of   the   spectrum 

Sections   10 and   11  have presented formulas  from which the 
spectrum of the scattered field may be calculated.    However, 
certain general  features  of the  spectrum  may  be deduced  without 
resort to exact calculation.    These will be described in the present 
section. 

(10.1) reveals the scattered field to consist of a spectrum of 
frequency components, centred on zero  (or OOQ, if the carrier 

frequency is included), separated by  intervals of IQ  (the blade 
rate)  and extending indefinitely  in  the positive and negative 
directions.    This accords with expectations for the periodically 
modulated   field. 

Although the spectrum extends indefinitely, only a finite band is 
significant.    It will now be estimated. 

The Js(r0') are the solutions of (5.9).    They will be small when the 

forcing function, the right side, is small.    From (3.8) to (3.10), with 
the familiar fact that the Bessel function is small when the order 
exceeds the argument, the right side of (5.9), and hence  J^(r0')' 

will be small when 

In^k^Qsine1 (12.1) 

The largest value of PQ is pmax , the maximum radius of the 
lit 

ensemble of bodies.    Using this in (12.1) and replacing ICQ by — 
... - ■     0 

(where XQ is the wavelength at radian frequency COQ) we have for 
the maximum value of |n|, Nmax say, 

Inl       =—p       sinG1 (12.2) lulmax    }   pmax v        ' 

Multiply both sides by Q and interpret |n|maxQ as the frequency 
separation from the centre, Mmax say, of the highest and lowest 
significant current harmonics.     Thus 

Nmav=— P     Qsin0i (12-3) iwimax    x   ^max A0 
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In the right side of (12.3), pmaxQsin91 is the maximum velocity of 
any point on the bodies towards or away from the source of 

2% illumination;    with the factor — it is recognised as the maximum 
X0 

Doppler shift of the illumination at any point on the bodies. 

Thus the currents induced on the bodies consist of a spectrum of 
frequency  components,  centred  on  the  illumination  frequency  COQ, 

spaced at intervals of the shaft rate Q.   and extending  with 
significant strength  to the  maximum positive  and  negative  Doppler 
shifts associated with the linear velocities of the bodies.    The 
spectrum  extends  indefinitely  beyond the  Doppler limits  but, 
through the behaviour of the Bessel  functions,  the strength 
decreases   rapidly. 

From the foregoing it is concluded that the integrand of (10.2), due 

to the factor J^(r0'), is negligible when |n|>|n|max as specified in 

(12.2). 

Through  the  definitions  (9.9)  and  (9.10)  and  arguments  essentially 
the same as the foregoing, it is found that the dyadic in (9.14), 

SW-n(V)§S+5kI-n(f0,)*S' is ne81:i8ible when 

|kl-n|>^-p       sin9s (12.3) 1 '    x     max v ' 

From this result and (12.1) it is readily found that the maximum 
value of |k| for which the integrand of (9.14) is non-negligible is 

lit 

lklmax=irPmax(sinel+sin0S) <12-4> 

Thus  k = ±|k|max give the highest and lowest terms in the 
summation in (10.1);    the spectrum of the scattered field extends 
above and below the centre by 

IK 

lklmax^ = r-PmaxQ(sinel+sineS) <12-5> A0 
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which  is recognised as  the  two-way  Doppler shift associated with 
the highest speed, viewed from the source and receiver, of any 
point on the ensemble of bodies. 

|k|max is the number of lines of significant strength on    either side 
of the centre in the spectrum of the scattered field.    Under some 
circumstances  (12.4) delivers  a  |k|max less than one.    In this event 
the scattered field is little, or un-, modulated.    Two extreme cases 
are of interest: 

(i)    Qi=eS=o   (axial backscatter): 
(12.4) predicts  no spectral lines;    despite the approximations used 
to derive (12.4), this result is rigorously correct, as will be seen 
below, provided I > 2.    Axial backscatter, when the ensemble 
comprises  more  than  two bodies,  is  unmodulated. 

(ii)   01=0S=— (incidence and scatter in the plane of rotation): 

(12.4), with  (2.1), predicts 

M 
ATJ- p p       Ot _ *n rmax _ rmax   1 

max      I     \n Xn/2 0        V2 (12.6) 

~   max,X/2 

where   d       . .„  is the maximum chord distance from one body to max, A. / 2 
the  next,   measured  in  half-wavelengths. 

As derived here (12.6) applies in the case of plane-wave incidence 
and scatter in the plane of rotation.    Radar illumination of jet 
engines is commonly close to axially incident and (12.6) may 
appear not to be relevant.    However, the field falling on the 
rotating compressor blades  after diffraction through  the  intake is 
not a plane wave.    It may be decomposed into a spectrum of plane 
waves which includes components in the plane of rotation. 
Similarly the scattered field contains components in the plane of 
rotation. 

Thus (12.6) is a significant result for jet engine modulation 
generally:    the number of spectral lines on each side of the centre 
is  approximately  equal  to  the  tip-to-tip  blade  separation 
measured   in   half-wavelengths. 
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If d
maxi/2  *s *ess tnan one' there are no significant spectral lines 

and the scattered field is unmodulated.    Here the bodies, even at 
maximum  radius,  are  separated by  less  than half a wavelength; 
the ensemble is electrically similar to a continuous disc. 
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13. Axial   backcatter 

This is the case where 91=9S=0. Without loss of generality the 

incident polarisation may be take n to be  e1. 

Froir i (3.8), with Appendix A, 

cl6=jn(-pj-(J     ,(0)-J  _,_,< n     J  v KJ2   n-r '     n + 1 o»-*|(Jn_ ,(0) + J r '     n 

jknz 
+ 1(0)))e   ° . 

(13.1) 

But 

J  (0) = 1         n = 0 n 
= 0         n*0 

and hence 

5ie
1=±j|(p±ji)eJkoZ 

ci9=0              n*±l n 

(13.2) 

The similarly  defined quantities cs9,cs<t\ see n     n (9.9) « and (9.10), 

reduce  to 

cg=±ji(p±j«ejk02 

(13.3) 

m      m 

It is clear from (5.9) and (13.2) that Js   is non-zero only for 

n = +l (13.4) 

which is therefore a condition for the integrand of (9.14) to be 
non-zero.    With (13.3), a further condition is that 

kl-n = +l (13.5) 

(13.4) and (13.5) permit the integrand of (9.15) to be non-zero 
only with the following combinations of I,n,k: 
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n = -1 k = -2, 0 
n = +l k =       0, +2 
n = -1 k = -1, 0 
n = +l k =       0, +1 
n = +-1 k = 0 

I = 1 

I = 2 

I = >2 n =+-1        k = 0 (13.6) 

From this it is seen that for I = 1 and 1 = 2   the values for kl are 
-2, 0, +2.    The spectrum contains components at COQ-2Q, COQ and 
(Ö0+2D. 

For I > 2 there are no side frequencies;    the scattered field is 
monochromatic at CöQ.    The axially backscattered field is 
unmodulated when the number of bodies is greater than two. 

These properties  of axial  backscatter have been reported 
previously [7] in a different context. 
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14.      Calculating   the   spectrum 

In this section are brought together the steps to be followed in 
numerical  calculation  of the   spectrum. 

1. Define a set of rectangular coordinates with z axis along the 
axis of the ensemble of bodies.    This serves to define the 
cylindrical and spherical coordinates also in use. 

2. Choose a single body from the ensemble and call its surface S0. 
If the bodies have a common region such as a central hub, a slice 
of angular width 2TT/I must be cut from it and included with the 
chosen body.    S0 does not include the surface exposed by the cut. 

3. Define a system of orthogonal curvilinear coordinates a,ß on S0. 
This serves to define at every point rn on S0 a pair of orthogonal 

unit vectors  ä(rQ),ß(r0), tangential to the surface. 

4. At every point r~ on S0  determine the direction cosines 

ap=«-p; a^ai; ccz =a.z ; ßp = ß.p ; ß^ = ß.|; ßz=ß.z    . 

5. At every point r0 on S0   determine  components 

ci0    ci9    ci9    ci<}>    c^    ci<j) 
np '   n<|> '   nz '   np '   n<|) '   nz    ' 

see (3.8) to (3.10). 

6. At every point r0 on S0   determine the quantities 

C9„ = -EneJn<t>0 (cie a   + cie, a, +cie a ) na 0 np  p     n(j)  §     nz  z' 

ce  =_E ejn<lVcieß +cieß  +cieß , 
nß 0e        tCnpPp+Cn<))P<j) +CnzPz') 

r$        t:    -^O/ i4>       .   i<t> id>     x CY^=-Ene     ucYa   +cy,a, +cYa ) na 0 v np  p     n<|)  <|>     nz  z' 

CY    =-E eJn(,)o(ci(,)ß   +ciYß    +ci(t)ß ) nß       V        ^CnpPp+Cn(l)P()) +CnzPz-> 
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(These are needed for solutions for incident polarisation in both 
the 9 and <j) directions. If only the first (second) is needed, only 
the first (second) pair of quantities  need be calculated.) 

7.    For every pair of points ?0,r0' on S0 compute the elements of 

G G  .    G 
PP P<l>      pz 

(j)p (J)(J)          <j)Z 
G G  .     G zp z<p       zz (r0,r0') 

(This is the matrix representation of the dyadic Green's function 
G£, see (C19), Appendix C.) 

8.   For every rQ,F0  compute the elements of 

c       c 
cccc      aß 

Gßa    Gßß 
(VcP 

see (6.8). 

9. Choose two sets of basis functions, 

f«(f0), fP(?0);* = l,2,...,L 

to represent the a and ß   components,  respectively,  of the  surface 
current density  distributions.     (We are here taking  equal numbers 
of the basis functions.    This is not strictly necessary.) 

10. Choose L values rQk of rQ, with k = l,2,...,L.   Calculate the 

elements of the four L x L square matrices 

g2?=JJf?rr0')GTlx(r0k.f0')dsr 

in which  TTX represent  the   combinations   cccc, aß, ßa, ßß and k and £ 
take values  1,2,...,L. 

11.  Assemble the quantities  calculated under headings  6 and   10 in 
the   matrix   equation 
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' aa 
LxL 

" aß" 
gk£ 

" ßa" 
LxL 

"gßß" 

LxL 

LxL 

lL 

cio^oi> 

Cna(?0L> 
Cnß(V 

Cna<W 

,    C = 9or(t) 

and solve for the constants  a,,b,, ^ = 1,2,...,L . 

The  current distribution  through  its  representation  by  a 
summation of basis functions, see (7.1), is now known. 

12.  Compute the integrals 

nfX>nVv>eJm*'°ds' 
r0'onS0 

for the  combinations  of parameters 

r) = a,ß; x = 6»<t>; |m(integer)|<——. 

13.  Compute  the spectral  components: 

'kl,e 
fS 

= K0I    I   e 
jnA(|) 

J(fS) 
n = —<» 

a 
(   X a^      ff     f^(f0') 

* = 1    f0'onS0 

P rr B 

£ = 1    f0'onS0 

r*0 

s0 
kl-n,a 
s<t> 
kl-n,a 

,s6 
'kl-n,p 
,s(l> :kl-n,ß 

KkI-n)V 
ds' 

J(f0') 

j(kl-n)cl) " 
e u ds ) 

(r0') 

for all |kl(integer)|<-—- 
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If there is  interest in the spectrum beyond the  Doppler limits,  the 
computations   here   and  under  the  previous   heading  should 
continue beyond the values of m and kl indicated. 
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15.       Conclusions    and    proposals    for    further   work 

Conclusions: 

A theory has been developed by  means of which the radar 
scatter from an ensemble of bodies with angular periodicity,  such 
as a compressor stage of a jet engine, may be calculated. 

The theory  exploits  the angular periodicity of the  scatterer 
in such a way that the computational load, compared with an 
approach which does not do this, is reduced by a factor 
approximately  equal  to the number of bodies. 

The theory leads to a solution in the form of the spectrum of 
the  scattered  field. 

The formal  solution,  without resort to numerical results, 
reveals  many  features of the spectrum  such as line separation, 
bandwidth,  number of lines of significant strength etc. 

A numerical approach has been developed in sufficient 
detail that the equations might be solved by a programmer with 
little or no familiarity  with electromagnetics. 

Proposals for Further Work: 

The theory  described here  contemplates  the  scatterer as  an 
ensemble of bodies in free-space illuminated by a plane wave. 
The jet engine departs from this ideal model in a number of ways: 
The engine compressor stage is surrounded by an engine cowling. 
It is one of several stages close enough together that strong 
electromagnetic interaction is to be expected.    The stages exist in 
the presence  of stator blades  which  themselves  constitute periodic 
structures.    All these departures from the ideal are expected to 
have their effects on the  spectrum. 

It is  proposed to continue this  investigation towards  a better 
understanding  of the  effects  mentioned  in  the  previous  paragraph. 
It is believed that the present theory constitutes a basis for such a 
continuation. 
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Appendix A    Formulas involving Bessel functions. 

The  following  formulas  or others readily  derivable  from them  are 
employed at several places in the text.    J (p) is the Bessel function 

of order n, argument p, and J '(p) = —J (p). 
n dp n 

±jpcosd)        ^    ,, ..nT /~\ in§ j JF     Y _    ■£    (Ij)1 J (p)eJ Y 

n 
n = —oo 

cosYe±jPCOS^ =     I    (±]f-h '(p)^ n 
n = —oo 

sm^C0S^=+   1    (±j)n^J (p)ejn* 
n = — P n 

J_n(P) = (-1)nj
n(P) 
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Appendix B 
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Appendix C    The Dyadic Green's Function for the Periodic Array, 

°i- 
By definition of the dyadic Green's function, the field at a point of 
position  vector   r due to a point source of vector current moment  p 
at position F is 

E(r) = p.G0(r,F). (Cl) 

Express  E(r) in terms of its components in the orthogonal 
coordinate  system   {TU.TU.TV,} with unit vectors fjj,^,^   evaluated 

at f, thus, 

E(r) = fi1ETi  +fj0E„   +r\?ßn (C2) 

and  p in terms of the system {C,C»C3} witn unit vectors Cj''C2''^3' 

evaluated  at  F, thus, 

P^'P^+^P^.+^'P^. (C3) 

Finally, express (Cl) in component form, noting that E    =f|rE(r) 

etc and pr , = C'.p etc, thus: 

•nrE 

V1 

_-n3-E. 

G           y     , G           y      , G           y      , 
¥l        ^2 ¥3 

G          y    , G          y     , G          y     , 
^1 -   ^2 ^3 

TI^I     "n^o "n^^ •3^1 '3b2        ''3b3 

q-.p 
e2-.p 
C3.P 

(C4) 

Now let p have unit strength and orientations  C'.^'.Co' 

successively to  get 

G^,(r,F) = f|(r).E(r;£(F)) (C5) 

where   E(r;£(F)) is the field at r due to a point dipole at F  of unit 

moment  and  orientation   £', and T^TL.T^TU;£ = C,C2,^r 
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From standard radiation theory  [e.g. 8] the field of the    current 
distribution   J(F)  may be found from the formula 

E(f) = JJJ (GJ(F) + RG'R.J(F))dv' (C6) 

where 

G.(R) = J 1    (-l-jkR + k2R2)e-jkR , (C7) 
jcoe 4,CRJ 

G..(R) = J !_ (3 + j3kR-k2R2)e_jkR , (C8) 
jooe 47tR3 

R = r-F (C9) 

and the integral is over the volume in which J(F) is non-zero. 

(C6) may be written in dyadic notation: 

E(f) = JJJ J(F).G^(f,F)dv' (CIO) 

where 

G^(f,F) = G'I + G"RR (Cll) 

and  I is the identity dyadic. 

Let 

E = E'+E" (C12) 

where   E and E"  are the parts associated with G' and G" 
respectively in (CIO), (Cll).    Then using (C5) with 
{r\vT\2,T]3} = &v{,2£3} = M,z} we have, for the pp element of the 

matrix  representation  of  G'l  in cylindrical coordinates, 

G'pp = p.E'(r;p') = p.p'G (C13) 

where   p and p' are unit vectors in the p  directions at r and F 
respectively.    Evaluating the dot product in (C13) gives 

G    =Gcos((|>-<i),) (C14) 
pp 
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The other elements  are  found from  similar considerations, and are 
set out as follows: 

Gl = G 

cos((|) - (j)')    sin(()) -({>')   0 

-sin((j) - $')   cos^-^)   0 

0 0 1 

(C15) 

Through similar application of (C5) the matrix representation of 
G'RR is found to be 

G"RR = G"x 

(pcos(<t> - (j)') - p' )(p - p' cos((|) - (f)'))   psin(<|> - <t>' )(p - p' cos(<|> - $))   (z - z' )(p - p' cos(<|) - p)" 

(pcos(<|> -<>')- p* )p* sin(<j> - <!>•) pp'sin2^-^) (z - z' )p' sin(<|) - «fr*) 

(pcos(c|>-<i>')-p')(z-z') p'sin^-^'Xz-z') (z-z')^ 

(C16) 

The  matrix  representation of  G0(r,F), see (Cll) is the sum, 

element by element, of the right sides of (C15) and (C16). 

To compute G£ in (5.11), consider 

= 1-1 jnO.    = = 
p.Gz(r,f0')=   I e      * p.Ri.Go(f,f0'.Ri) 

i = 0 
(C17) 

which is the field at r due to the periodic circular array of point 
jn<l>._ = 

dipoles of vector moment  p. =e      *p.Ri, i=l,2,...I-l, at the 

corresponding  points   F. = F0.R~i, see figure Cl.   Note that 

jnO. 
p.=e      *(p(fppp+<Kfpp^ + z(ry)pz) (C18) 

in which it has been recognised that the unit vectors 
p(f.'), (j>(r.'), z(r.') are related to their values at rV   through the 

rotation   Ri and the scalars   PD"P<k"Pz'   do not vary around the 

array. 
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Then with (C15) and (C16), Gz  may be expressed in matrix form 

thus 

1-1 jncD. 
GE(r,F0)^   le      1{G'(R.) 

L      °     i = 0 

c. s.   0 
1 1 

-s. c.   0 
1 1 

0 0     1 

+ G"(Ri) 

(pC-p'Xp-p'C)   pSjCp-p'C)   (z-z'Xp-p'C 

(pC-p^p'Sj PP'Sj2 (z-z^p'Sj 

(pC-p'Xz-z')       p'S^z-z') (z-z1)2 

(C19) 

where 

C^cosOt)-^'),   Si = sin(4) - (j)/) 

and 

R. = 
l 

r —r- 
l 

(C20) 

= (p2+Pi
,2-2ppi

,cos((t)-(t)i') + (z-zi')
2)2 (C21) 

Since P^PQ', ^ = $0'+QvzS = zQ', (C21) may be simplified to 
I 

Ri=(p2+p0'2-2pp0'cos((l)-(|)0'-(l>i) + (z-z0')2)2     (C22) 
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i      0     l 

jn3>._:= 
p. =e      ^.R. ri r    l 

Figure Cl:   Array of point dipoles p.  at corresponding points  r.\ 
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Appendix D    The expressions  f.(A.R), e.(A.R), <|>.(A.R) 

A is an arbitrary vector,    R is a rotation dyadic of the type 
defined in (3.12), and (3.12) with rotation angle  O, and r, 9, <j>  are 
unit  vectors  associated  with  the  spherical  coordinate  system, 
evaluated at the point  (r,0, <|>).    The unit vectors may be expressed 
in terms of unit vectors in the rectangular system thus: 

r = xsin9cos<J> + ysin9sin(j) + zcos9 

9 = xcos9cos<j) + ycos9sin())-zcos9 (Dl) 

<j) = -xsin<}> + ycos(t) 

Performing the rotation according to (3.12) on the vector 

X = xA   +yA   +zA, (D2) x    J   y        z 

and then forming the dot products with  ?,§, $ as given in (Dl) 
successively   gives 

r.(X.R) = A  sin9cos((|)-0) + A  sin9sin(())-0) + Azcos9 

§.(X.R) = A  cos0cos(<t> - <E>) + A  cos9sin(<j>- $) - A  sin 9 

<j>.(A.R) = -A  sin((j) - «) + A  cos(<j> - O) 
x y 

(D3) 

Applying the first of (D3) with r = fs ==(l,9s,<t>s), & = ?Q = (r'0>Q'0><V0) 

and  R = Ri with rotation through angle  O^ gives, after minor 

manipulation  involving  trigonometric  identities   and  the  relations 
between  spherical  and  cylindrical  coordinates, 

rs.(F().Ri)=p'0sin9scos((j)'0+Oi-(t)S) + z,
0cos9s) (D4) 

Now let 9 = 9s and A = J^(?0), but write the rectangular 

components of A in terms of the cylindrical components of P, 

thus 
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A   =JS   (Fn)cosd>'   -Js .(Fn)sind>' x      npv  0       Y0    n<fr  0       Y0 

A   = JS   f?n)sin<|>'   +Js,(Fn)cos<|>' (D5) ynpv0Y0n<jr0Y0 

A   =JS  (Fn) z      nzv Cr 

Making these substitutions in the second of (D3) gives 

9S.(JS .Ri) = Js   cos9s cos(d)'   +0. -d>s) - Js , cos6ssin(d>*   +0. -<j>s) ^ n np Y 0      l    Y '     n(j) Y 0      I    
Y 

-r  sinB5 

nz 

(D6) 

Finally, setting  <{> = <j)s, and A = JS(FQ) in the third of (D3) gives the 

result 

^s.(Js
n.Ri) = Js

npsin(<))'0+Oi -c|>s) + JsQ(t)cos((t)'0+Oi -<|>s) 

(D7) 
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